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We show that the hydrophobicity of sequences is the leading term in Miyazawa-Jernigan interactions. Being
the source of additive �solvation� terms in pair-contact interactions, they were used to reduce the energy
parameters while resulting in a clear vector manipulation of energy. The reduced �additive� potential performs
considerably successful in predicting the statistical properties of arbitrary structures. The evaluated designabili-
ties of the structures by both models are highly correlated. Suggesting geometrically nondegenerate vectors
�structures� as proteinlike structures, the additive model is a powerful tool for protein design. Moreover, a
crossing point in the log-linear diagram of designability ranking shows that about 1 /e of the structures have
designabilities above the average, independent on the used model.
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I. INTRODUCTION

The challenge to understand the different aspects of the
protein folding phenomenon has been brought further by
means of different disciplines, especially after the classic
contribution by Anfinsen �1�. The extreme complexity of the
problem due to the numerous number of interacting atoms
has made the study of the problem practically impossible in
the atomic scales. The simplified coarse-grained models in-
troduce a feasible way to understand significant macroscopic
characteristics of the macromolecules without any reference
to the atomic details. However, a relatively impeccable esti-
mation of the effective inter-residue interactions is necessary
for such models in order to yield reasonable results.

Although it is believed that the solubility of different resi-
dues in the water environment �that is, a single-body effec-
tive solvation potential� plays the most significant role in the
folding process, the most commonly used class of potentials
in the folding problem is the class of two-body interactions,
e.g., the potential introduced by Miyazawa and Jernigan
�MJ� �2�. Introducing an effective contact distance and pay-
ing particular attention to the contacts between different resi-
dues in a protein’s native structure, they reached an estima-
tion of the effective inter-residue interactions by means of a
statistical method �2�. The contact energy parameters Mij
form a 20�20 symmetric matrix, namely the MJ matrix
�M�, presenting 210 independent contact energy parameters
between 20 known amino acids. This matrix has been modi-
fied later by considering a larger database of proteins �3� and
through some self-consistent iterative procedures �4–6�. Al-
though the MJ parameters are not particularly successful in
the study of the folding dynamics and mechanism, they pre-
dict the groundstate configuration from decoys quite fine �6�.

Analyzing the eigenvalues of MJ matrix, Li et al. have
shown that its elements can be approximated quite fine by

considering only 22 parameters instead of the original 210
parameters �7�. That is, 20 energy parameters, q, one residue
independent mixing energy parameter, �, and a collapsing
energy parameter, Ec, which is physically irrelevant in the
energy spectrum of the structures sharing the same compact-
ness. The pair-contact energy between two residues having
energy parameter q and q� is given by

Eqq� = − �Ec + q + q� + �qq�� �1�

in their model. They argued that the energy parameters �q’s�
are measures of hydrophobicity of residues and their distri-
bution supports simplified two-letters hydrophobic-polar
�HP� model �8�. The authors �7� suggested the HP energy
parameters as 1, 0, and 0.3 for qH, qP, and �, respectively, in
an arbitrary energy unit. Furthermore, they have shown that
there always exist a set of highly designable structures which
are reasonably better candidates as ground state structures
compared to the other configurations, regardless of using the
energy parameters either from the HP model �9� or the 20-
letters model �MJ energy parameters� �10�.

In a recent work �11� it has been shown that most com-
monly used pair-contact potentials can be divided into two
different classes of small and large � values. Setting �=0 in
Eq. �1�, we are left with the additive part of the contact
potential energy which may be treated as a solvation-like
model �12,13�. In this reduced model, the pair-contact energy
of a given protein with N residues in a given configuration
may be represented using vectorial notation in a compact
fashion:

E��qi�,�r�i�� =
− 1

2 �
i,j

N

�qi + qj�Cij = − �
i,j

N

qiCij = − q� · v� ,

�2�

where i and j are residue’s indexes along the chain, r�i is the
position of residue i and C is the structure’s contact matrix.
The element Cij is 1 if the distance between the correspond-
ing non-chemically bonded pair in the given structure is
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smaller than a cut-off radius, rc, and is zero otherwise. The
vector v� , defined as vi=� j=1

N Cij, is a one-dimensional projec-
tion of the contact matrix and is called the contact vector
�12,14�. The components of this integer vector are simply the
number of contacting neighbors for corresponding residues,
regardless to their types. Although the reduced model de-
creases the computational cost as it reduces matrix products
to vector products, this presentation carries noticeably less
information compared to the contact matrix representation.
The vectors are generally degenerate and any of them may
correspond to g different contact matrices. In the case in
which g=1, the vector is nondegenerate and there is a one to
one relationship with its corresponding matrix. Recent stud-
ies show that the three-dimensional structure is reproducible
using one-dimensional vector representation for some small
proteins �15,16� which suggest that the contact vectors of
proteinlike structures have to be nondegenerate.

Consistent with many arguments about the central role of
hydrophobic forces in the protein folding problem �17–19�, it
has been shown that in the case of two-letters �HP� lattice
model, the additive �solvation� terms of the potential carry
enough information to replicate the energy spectrum of se-
quences in the configuration space �12�. It has also been
shown that non-degenerate contact vectors �g=1� are noticed
in parallel to highly designable structures as well as large
energy gaps between the groundstates and the first excited
states of native proteins �12,20�.

In this study, we show that in the case of 20-letters model,
the additive part of MJ matrix carries enough information to
manifest highly designable structures, by enumerating all
chain configurations in a two-dimensional square lattice
model up to a length of 36. Although the applicability of the
additive potential instead of MJ potential is not very prom-
ising in coming up with the same groundstate structure of a
randomly given sequence, its performance is appealing on
proteinlike sequences.

II. THE MODEL

We consider the MJ96 interaction matrix �M� �introduced
by Miyazawa and Jernigan in 1996 �3�� as the reference pair-

contact interaction matrix between all different types of the
residues. The additive potential defined as

Eij = qi + qj �3�

will be regarded as the first-order approximation of the inter-
action matrix in which indices i and j �going from 1 to 20�
refer to the residue types. Turning back to the approximation
made in Ref. �7�, one can identify the additive potential as
the �=0 limit of Eq. �1� which may still hold the general
behavior of the original model. A similar procedure has been
done in the case of the two-letters HP model �12�. The other
constant parameter, EC, is absorbed into the residue depen-
dent parameters.

The root mean square distance of the two matrices, de-
fined as RMSD=��ij�Mij −Eij�2 has been taken as a measure
of the similarity between them. Therefore, a set of additive
parameters �q’s� minimizing the RMSD of the two matrices
will theoretically mimic the original interresidue interactions

TABLE I. Correlation between different hydrophobicity scales �23�. �The upper half represents the cor-
relation coefficients and the lower half is the p value multiplied by 105.�

Hyd. scale ADD96 ADD85 HS1 HS2 HS3 HS4 HS5 HS6 HS7 HS8 Li et al.

ADD96 0.979 0.790 0.830 0.758 0.818 0.724 0.759 0.836 0.914 0.996

ADD85 1 0.783 0.806 0.758 0.807 0.744 0.739 0.834 0.918 0.979

HS1 41 46 0.879 0.686 0.760 0.668 0.724 0.776 0.875 0.808

HS2 21 31 9 0.587 0.723 0.452 0.751 0.705 0.810 0.857

HS3 70 70 214 864 0.925 0.787 0.721 0.718 0.835 0.759

HS4 25 31 67 123 4 0.655 0.930 0.801 0.887 0.828

HS5 121 88 281 4324 43 338 0.434 0.754 0.780 0.698

HS6 68 95 121 78 127 3 5230 0.767 0.811 0.776

HS7 19 19 52 161 132 34 75 60 0.870 0.826

HS8 4 4 9 29 19 7 49 29 10 0.920

Li et al. 1 1 30 13 68 21 181 52 22 4

FIG. 1. �Color online� The reference potential �MJ96� and the
extracted additive potential �Additive96� parameters are compared
with each other, showing a strong correlation �r=0.982�.
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�MJ matrix�. Minimizing RMSD simply gives q’s as

qi = 	M
i −
1

2
	M
 , �4�

where the first term is the average of the strength of interac-
tions between ith amino acid and all other ones �including
itself� while the second term is a residue independent value,
equal to the half of the mean of interactions between all
different residue types which may be described as a tendency
for proteins to fold into compact structures. For the struc-
tures with the same compactness �having the same number of
contacts�, it causes an irrelevant shift in energy spectrum.

To find the sensitivity of low-energy states to the model
interaction energies, we enumerated all maximally compact
structures having different lengths of L=16, 20, 30, and 36.
We also studied the whole structures with L=14,16 to be
sure that the compactness restriction does not affect the con-
clusions. Working in complete configuration space of larger
chains is not feasible in a reasonable time. The time limita-
tion also restricted us to consider only two-dimensional
structures. Among all structures which are identical by geo-
metrical symmetries, we chose only one.

Because of the large number of possible sequences, we
restricted our evaluation to an ensemble of random se-
quences, followed by search for their ground states and first
excited states in the structures space. To be more specific, in
the case of L=36 we sampled 2.4�107 different sequences
among 2036�1047 possible sequences and 107 for other
cases. This amount of the samples yield to valid statistical
results as there was no significant impact on the results even
after ignoring half of these samples.

Starting with the MJ96 model as the reference potential,
we searched the conformation space for the ground state and
the first excited state of each of the sampled sequences using
the pair-contact interactions. Moreover, we evaluated the en-
ergy of these two structures using the additive potential. A
similar search in the conformation space for the groundstate
and the first excited state of each sequence is followed using
the additive potential. We did the same comparison with the
MJ85 pair interactions �2� and also for its additive part.

III. RESULTS

A. The D matrix

It is well believed that the hydrophobicity of the residues
plays a very important role in the folding process. However,

FIG. 2. Graphical comparison of the reference
potential �left� and extracted additive potential
�right�. Darker elements correspond to stronger
interactions.

FIG. 3. �Color online� The histogram of the elements of D �the
difference of Additive96 and MJ96 matrices�. Except for a few
elements, the rest of the differences are less than 0.5kBT.

FIG. 4. �Color online� The number of highly compact structures,
their corresponding contact vectors, and the number of vectors with
g=1 for different lengths are presented in a log-log plot.
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there is no unique scale for measuring this characteristic.
Although the different scales agree with each other, they are
strongly sensitive to the type of the experiment �Table I�. As
it was mentioned before, the additive potential parameters
�q’s� extract the contribution of hydrophobicity in MJ matrix.
Therefore, they may be regarded as a new measure of hydro-
phobicity. We have compared them with the experimental
scales and also with the q parameters, found by Li et al. �7�
in Table I. The upper half of the table represents the corre-
lation coefficient �r� between hydrophobicity scales where
the lower half is dedicated to the corresponding p values �a
measure of significance of the statistics�. The table shows a
significant correlation between the additive part of MJ matrix
and the other hydrophobicity scales. This correlation has
been observed formerly by Chan �21� in a reverse way, i.e.,
he noticed a correlation between the elements of MJ matrix
and the sum of the hydrophobicity of the corresponding
amino acids.

The reconstructed interaction matrix, Eq. �3�, is quite
similar to the original MJ matrix. The elements of these two
matrices have been compared with each other in Fig. 1,
showing a strong correlation of r=0.982 which is even stron-
ger than the correlation between the different revisions of the
MJ matrix �0.973� �introduced in 1985 �2� and 1996 �3��. It
means that the difference between the additive matrix and
the reference one is in the range of statistical errors. Interest-
ingly, the additive parts of the two MJ matrices correlate
better than the matrices themselves �r=0.979 in this case�.

Figure 2 is a graphical representation of the matrices us-
ing a gray-scale intensity plot, i.e., darker elements corre-
spond to stronger interactions. As one can conclude, the ma-
trices are quite similar to each other and the relative
difference of each element is small, compared to the element
itself. Roughly speaking, the left graph �additive� is the faded
version of the right one �MJ� in Fig. 2. Therefore, we can
consider the differences as perturbative terms to the additive
matrix. This result agrees with the conclusion of Ref. �12�
where parameter � was introduced as a perturbation to the
HP model.

We define the difference matrix as

Dij = Mij − �qi + qj� . �5�

We have sketched the distribution of the elements of the
matrix D in Fig. 3 in order to see how large they are. Except
for a few large elements, the difference of the two matrices is
small, compared to kBT. The energy of a sequence in a spe-
cific structure consists of the interaction energy of all of its
contacts, meaning that this cumulative error may be not as
negligible as of a single contact. Based on the central limit
theorem, the mean and the standard deviation of the sum of
N randomly chosen elements of D are larger than mean and
the standard deviation of its elements, by factors N and �N,
respectively. For example, highly compact 2D structures
with 36 residues on a square lattice have 25 contacts between
the residues. The above discussion suggests that employing
the additive matrix instead of the MJ matrix is plausible,
together with a random energy with a zero mean and a stan-
dard deviation of 1.40kBT. This random deviation is large
enough to make the groundstates unstable. However, we will
show that the chain correlations and the correlated shifts in
the energy spectra considerably moderate the above naive
estimation.

B. The statistical properties of structures with different
lengths

As mentioned before, the vector representation of con-
figurations is a tricky method for decreasing the CPU run
time as it reduces the matrix calculations to vector calcula-
tions. It is also responsible for some new degeneracies. In
other words, in the vector model, all of the structures belong-
ing to a vector with g�1 have the same energy. Thus, none
of them can correspond to a unique groundstate. Table II
reports the number of contact matrices, contact vectors,
structures with unique contact vectors and also the average
of g for different lengths, and Fig. 4 shows the first three of

TABLE II. The number of contact matrices and contact vectors
of maximally compact structures on 2D square lattices.

Length 16 20 30 36

Structures 69 503 13498 57337

Vectors 56 398 9514 35662

Vectors with g=1 45 309 6819 23921

Average of g 1.23 1.26 1.42 1.61

TABLE III. Probability of occurrence of each scenario with their average energy gap.

Length 16 20 30 36

Probability of first scenario 3.8% 3.2% 3.1% 3.3%

Probability of second scenario 23.4% 24.7% 33.1% 37.4%

Probability of third scenario 72.8% 72.1% 63.8% 59.3%

Average energy gap �second scenario� �kBT� 0.34 0.32 0.33 0.34

Average energy gap �third scenario� �kBT� 0.92 0.69 0.57 0.54

TABLE IV. The ratio of invariant ground states of the reference
potential under the application of variant potentials.

Additive96 MJ85 Additive85

Second scenario 10.5% 35.8% 9.0%

Third scenario 33.0% 43.4% 28.5%

Totala 24.5% 40.4% 21.0%

aThe total probability is not simply the sum of the above numbers
but their average with respect to the weights given in Table III.
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these parameters in a log-log plot. Although the number of
vectors with g=1 is increasing with length, its ratio to the
total number of structures is decreasing. Thus, the average
value of g is an increasing function of length, implying that
the probability of being a proteinlike structure is smaller than
that of short lengths for larger structures.

C. Proteinlike sequences

Searching for the groundstate of any given sequence using
the MJ energy parameters, we will deal with one of the fol-
lowing scenarios.

�1� It does not have a global minimum energy configura-
tion. It is not a proteinlike sequence and is not a matter of
our interest.

�2� It has a global minimum energy configuration but
the structure corresponds to a vector with g�1. There are
g−1 other configurations which have the same form in vec-
tor representation. Thus this sequence does not have a unique
groundstate using the vector �additive� model. It has been
shown that in the case of HP lattice model, such sequences
are of little interest and do not behave as proteinlike se-
quences �12�. More careful considerations are required to
conclude the same statement for 20-letters models.

�3� It has a global minimum energy configuration and the
structure corresponds to a vector with g=1. In the HP model,
such structures are usually highly designable. Folding in
highly designable structures, such sequences will be called
proteinlike sequences.

In order to find the frequency of occurrence of each of the
above scenarios, we have studied a set of randomly chosen
sequences. Table III shows the ratio of sequences belonging
to each scenario. The average energy gaps, the energy differ-
ences between the groundstates and the first excited states,
are also reported for different scenarios. The sequences be-
longing to the third scenario have a considerably larger en-
ergy gap which is yet another observation relating the pro-

teinlike structures to those having non-degenerate vector
representations �g=1�. The probability of occurrence of the
first scenario remains almost constant for different lengths
but the probability of belonging to the second and third sce-
narios increases and decreases with their lengths, respec-
tively. It means that fewer sequences have the chance to fold
in a structure with g=1, i.e., those which are claimed to be
the proteinlike sequences.

D. A comparison between the observable parameters of the
reference and the additive potential

The aim of this section is to use the additive potential as
an approximation to the reference pair-contact potential.
Thus, a relevant question is how successful it is in finding
the groundstate structures. Our investigation shows that us-
ing the MJ96 potential as the reference and for the structures
with length of 36, about 33% of sequences belonging to the
third scenario fold in the same structures, once we employ
the additive approximation. Apparently, it seems that the ad-
ditive approximation is not promising in the prediction of the
ground states. However, comparing the two versions of the
MJ potential �MJ96 and MJ85�, the overlap between the
ground states of these sequences is found to be only 43%.
�See Table IV.�

It should be noted that in this comparison, we only con-
sider the third scenario structures as the others are not can-
didates for being ground states, according to the additive
model. Comparing the two versions of the MJ potentials, we
are also able to look at the same ground states belonging to
the second scenario. We found a similarity of about 36% in
this case which is less than the same study of the third sce-
nario. This conclusion is consistent with our previous obser-
vation that these structures possess smaller energy gaps. This
is another fact that lets us consider structures with nondegen-
erate contact vectors as reasonable candidates for the ground
states of proteinlike structures.

FIG. 5. �Color online� The designability of a
given structure in the reference model �MJ96� is
compared with its designability in two other
models: �a� Additive96; �b� MJ85. The most des-
ignable structures are the same in both cases.

FIG. 6. �Color online� �a� The histogram of
difference of designabilities of a given structure
evaluated by Additive96, ns�, and MJ96, ns. �b�
The histogram of the relative change in the des-
ignabilities. The difference in designabilities can
be neglected, compared to the designabilities
themselves.
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Although the additive potential is not successful in evalu-
ating the same ground states found by MJ potential, we may
still investigate its capability in finding the general properties
of the structures such as the spectrum of designability. The
designability is defined as the number of sequences folding
into a specific structure �see, for example Ref. �9��. Figure 5
is a comparison of the designabilities of compact structures
evaluated by the additive model �ns�� with the evaluations of
the MJ model �ns� for L=36. As mentioned before, we have
ignored the structures with g�1. Concluding from the cor-
responding figure, the parameters mentioned above strongly
correlate with each other �r=0.956�. The correlation coeffi-
cient for compact structures with L=16, 20, 30 are 0.996,
0.992, 0.959, respectively. Considering the whole structure
space for L=14,16, the designabilities still show strong cor-
relations of 0.997 and 0.996, respectively. Designabilities of
structures in two different versions of the MJ potential

�MJ96 and MJ85� also agree with each other �r=0.994, Fig.
5�, meaning that the relative designability of structures is
considerably insensitive to small perturbations in interac-
tions.

Additionally, it is also notable that the first few highly
designable structures are similar in both models, which
means that the additive potential is able to indicate highly
designable structures successfully. It should be noted that
yielding to these structures is considerably more expensive
using the reference pair-contact potential. The conservation
of designability order has been previously reported in the
case of two-letters model �20�. Looking at the difference
between the designabilities of structures in the additive and
reference potentials, Fig. 6, we notice that it is highly peeked
near zero, implying that it is possible to indicate the design-
ability of structures using the additive model with a small
relative error in most cases. However, the tail of the histo-
gram in Fig. 6 warns for the possibility of evaluating sub-
stantially different designabilities. A closer look at Fig. 5
ensures us that the order �rank� of designability is more con-
served, especially for highly designable structures. There-
fore, one can conclude that the additive potential is more
successful in the study of the statistical characteristics of the
structures than single designs.

E. A crossing point in designability-ranking graphs

We have also observed that regardless of the used poten-
tial, designability obeys a universal law in terms of ranking.
Figure 7 reflects the designability of all structures as a func-
tion of their rank for different potentials, including three ver-
sions of the MJ interactions introduced by Miyazawa and
Jernigan in 1985, 1996, and 1999 and also the additive po-
tential extracted from MJ96. In all of these models, the
graphs are linear in a semilog plot �Fig. 7�a��, especially for
highly designable structures. Assuming that

r = Ae−�ns, �6�

where r and ns are the rank of a specific structure and its
designability, respectively, and � is a model-dependent free
parameter.

The normalization factor A may be determined by noting
that the summation over designability of all structures equals
the number of studied sequences, S. That is,

S = �
r=1

N

ns�r� =
1

�
�
r=1

N

�ln A − ln r� ,

=
1

�
�N ln A − ln�N!�� , �7�

where N is the number of structures. Solving the last equa-
tion for A, employing the Stirling’s approximation and sub-
stituting it into Eq. �6�, we finally reach

r = Ne�S/N−1−�ns =
N

e
e−��ns−n̄s� �8�

where n̄s=S /N denotes the average designability of the struc-
tures.

FIG. 7. �Color online� The structures are sorted in descending
order of their designabilities in different models. �a� Designability
almost is a log-linear function of rank in all studied models. �b� The
same plot in a linear-linear scale. The vertical axis is shifted by
mean of designability of the structures. The horizontal axis is also
scaled by the total number of structures. All of the graphs pass
through a fixed point.
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Equation �8� introduces a fix point on ns= n̄s, meaning that
the rank of structure with ns=S /N is independent on the
model and is equal to N /e �see Fig. 7�. By rescaling the
rankings with respect to the total number of structures
�which is different for additive and nonadditive potentials�
and subtracting n̄s from the designabilities, the fixed point
appears more visible �Fig. 7�b��. The same feature has been
previously observed for two-, four- and infinite-letters mod-
els �22�.

F. The first excited state energy gap

It is believed that the native states of most proteins are
stable against thermal fluctuations and mutations. This sta-
bility is a result of large gap between the free energy of the
native states and the first excited states, which is a character-
istic of the proteinlike sequences. If we approximate the dif-
ference of free energy with the energy gap of states, we
expect a positive correlation between the averages of the
energy gaps of the sequences which fold into a specific struc-
ture, 	�
, and the designability of the corresponding struc-
ture.

Comparing the average energy gap of different structures
in the additive and the reference potential yields to quite
similar diagrams �Fig. 8�, although the energy gaps in the
additive model are slightly smaller than those of the MJ
model. The difference of the number of points of the additive
and MJ graphs is a result of ignoring structures having g
�1 in additive model. There is a jump in the energy gap
diagram of short sequences which may be used to distinguish
low and high designable structures from each other �e.g.,
length 16 in Figs. 8�a� and 8�b��. This transition becomes
smoother for sequences with larger length �e.g., length 36 in
Figs. 8�c� and 8�d��. The jump in energy gap is a distin-
guished characteristic of finite size structures which is more
visible in the models with less free parameters �such as the
HP model� than the complicated models �such as MJ refer-
ence potential� �9,12�. However, the highly designable struc-

tures possess a larger energy gap in average, regardless of the
used model.

Figure 9 reports the probability of finding the same struc-
ture as ground state in different models as a function of en-
ergy gap, �. The probability increases monotonically as a
function of � which means that deeper ground states of the
reference potential have a higher chance to be ground states
in the additive model too.

Marking the ground state and the first excited structure of
each sequence in the MJ potential model and comparing the
folding energy difference in this model, �, with the energy
difference in the additive model, ��, we reach to a meaning-
ful correlation between them. If these structures had been
chosen randomly, we would have expected a Gaussian dis-
tribution for �−�� centered in origin. However, this differ-
ence has a nonzero mean centered at 0.11kBT �Fig. 10� for

FIG. 8. �Color online� The average energy
gap between the ground state and the first excited
state of a given structure is compared to its des-
ignability in different models. �a� 4�4 structures
in the MJ96 potential. �b� 4�4 structures in the
Additive96 potential. �c� 6�6 structures in the
MJ96 potential. �d� 6�6 structures in the Addi-
tive96 potential. In the case of additive models
��b� and �d��, the structures with g�1 �degener-
ate ground state, �=0� have been ignored. A
jump is observed in subfigures �a� and �b� which
is associated to the finite size effect �see text�.

FIG. 9. �Color online� The probability of finding the same
ground state for a given sequence using both Additve96 and MJ96
models vs the energy gap in MJ96 model ���.
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these models. The small tendency of these structures to fold
in the same ground state is associated to their smaller energy
differences in the additive model.

G. Protein design using additive potential

Designing a protein can be described as finding a se-
quence, �, which maximizes the Boltzmann probability of
finding the protein in a specific configuration, S*. Therefore,
one must maximize

P =
e−H��,S*�/kBT

� e−H��,Si�/kBT
, �9�

with respect to �, where H�� ,S� is the folding energy of � in
structure S. The additive potential may be used as a first
approximation in protein design. We have studied the ability
of the additive model to design sequences for all 69 maxi-
mally compact 2D square lattice structures with L=16. This
attempt failed for 24 of them, basically due to the degeneracy
of their contact vectors �g�1�, together with 6 other struc-
tures with g=1. In these cases, the sequence which maxi-
mizes the probability has degenerate ground state. For the
remaining 39 structures, we could successfully design a se-

quence to fold in the additive potential model. Moreover, the
evaluated ground state structures remains unchanged under
the application of MJ potential. The energy gap of these se-
quences varies in the range 2.90kBT to 8.56kBT and the mean
value of the gaps is equal to 5.91kBT.

IV. CONCLUSION

We have shown that the additive part of the pair-contact
interactions between amino acids �introduced by Miyazawa
and Jernigan �3�� essentially represents the main characteris-
tics of the reference interactions. Taking the additive part as
the leading term, we have shown that the deviations may be
considered as a first-order perturbation to the reference inter-
actions. The additive �solvation� model introduces less en-
ergy parameters while reducing the encoding of structures
from a matrix form to a vector form.

Considering the MJ96 potential as the reference potential,
we have investigated the conservation of the ground states of
the structures under employing the additive model. The
ground states of about one fourth of sequences are conserved
in the case of 6�6 structures. This number is improved to
one third if we consider only nondegenerate �g=1� struc-
tures.

The additive potential is quite successful in predicting the
statistical properties of the structures. The designability of
the structures evaluated by the reduced model is highly cor-
related to the reference model. The additive model success-
fully indicates the highly designable structures �evaluated by
the reference potential�, all of them being among g=1 struc-
tures. This observation suggests that nondegenerate vectors
�structures� extensively resemble the proteinlike structures.
Sequence design for such structures is also successful using
the additive model.

Taking the other version of MJ matrix �MJ85� as another
perturbation to the MJ96 results in a same magnitude of
deviation, although the computation is much cheaper using
the additive model.

We have also observed a crossing point in the log-linear
diagram of designability ranking, showing that about 1 /e of
the structures have designabilities above the average, inde-
pendent on the used model.
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